

Automated Measurements of CO₂, CH₄, and N₂O Fluxes from Tree Stems and Adjacent Soils

Josep Barba, Rafael Poyatos and Rodrigo Vargas

University of Delaware

New Phytologist

Methane emissions from the trunks of living trees on upland soils

Zhi-Ping Wang^{1,2}, Qian Gu¹, Feng-Dan Deng^{1,3}, Jian-Hui Huang¹, J. Patrick Megonigal⁴, Qiang Yu², Xiao-Tao Lü², Ling-Hao Li¹, Scott Chang⁵, Yun-Hai Zhang¹, Jin-Chao Feng⁶ and Xing-Guo Han^{1,2}

¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, Chinas²State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, Chinas³University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, Chinas⁴ ⁴Smithsonian Environmental Research Center, PO Box 28, Edgewater, MD 21037-0028, USA⁵ ³Department of Renewable Resources, University of Alberta, Edmonton, T6G 2E3 Alberta, ⁴Canada⁶ ¹Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

Summary

Authors for correspondence: Zhi-Ping Wang Tel: +86 10 62836635 Email: wangzp5@ibcas.ac.cn

Xing-Guo Han Tel: +86 10 62836636 Email: xghan@ibcas.ac.cn

Received: 11 November 2015 Accepted: 20 January 2016

New Phytologist (2016) 211: 429–439 doi: 10.1111/nph.13909

Key words: annual variability, drained soils, heartwood, *in situ* methane (CH_a) flux, poplar (*Populus davidiana*), temperate forest. Upland forests are traditionally thought to be net sinks for atmospheric methane (CH₄). In such forests, *in situ* CH₄ fluxes on tree trunks have been neglected relative to soil and canopy fluxes.

 We measured in situ CH₄ fluxes from the trunks of living trees and other surfaces, such as twigs and soils, using a static closed-chamber method, and estimated the CH₄ budget in a temperate upland forest in Beijing.

• We found that the trunks of *Populus davidiana* emitted large quantities of CH₄ during July 2014–July 2015, amounting to mean annual emissions of 85.3 and 103.1 μ g m⁻² h⁻¹ on a trunk surface area basis on two replicate plots. The emission rates were similar in magnitude to those from tree trunks in wetland forests. The emitted CH₄ was derived from the heartwood of trunks. On a plot or ecosystem scale, trunk CH₄ emissions were equivalent to *c*. 30–90% of the amount of CH₄ consumed by soils throughout the year, with an annual average of 63%.

 Our findings suggest that wet heartwoods, regardless of rot or not, occur widely in living trees on various habitats, where CH₄ can be produced.

J. Plant Nutr. Soil Sci. 2017, 000, 1–5 DOI: 10.1002/jpln.201600405 Combining soil and tree-stem flux measurements and soil gas profiles to understand CH ₄ pathways in Fagus sylvatica forests Martin Maier ^{1*} , Katerina Machacova ² , Friederike Lang ¹ , Katerina Svobodova ² , and Otmar Urban ² Plant Soil (2017) 420:423–434 DOI 10.1007/s11104-017.3416-5	New Phytologist Methane emissions from the trunks of living trees on upland soils Zhi-Ping Wag ^{1,2} , Qian Gu ¹ , Feng-Dan Deng ^{1,3} , Jian-Hui Huang ¹ , J. Patrick Megonigal ⁴ , Qiang Yu ² , Zhi-Ving Wag ^{1,2} , Qian Gu ¹ , Seng-Dan Deng ^{1,3} , Jian-Hui Huang ¹ , J. Patrick Megonigal ⁴ , Qiang Yu ² ,
REGULAR ARTICLE Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest Yuan Wen • Marife D. Corre • Christine Rachow • Lin Chen • Edzo Veldkamp Plant Soil (2016) 398:35-45 DOI 10.1007/s11104-015-2629-8	Xiao-Tao Lii*, Linz-Hao Li , Juot China
Nitrous 15 papers reporting angusti Eugenio DB Heinz Ren emissions under field cor Clobal Change Biology Clobal Change Biology Clobal Change Biology 2015) 21, 3899-3900, doi: 10.1111/gcb.12995 TECHNICAL ADVANCE CIENT Nitrous oxide and methane emissions from cryptogamic covers CIENT	CH ₄ and/or N ₂ O stem nditions in upland forests Inditions In upland forests Itsuse TIFIC REPORTS
CONTRACTION A LENHART ^{1,23} , BETTINA WEBER ¹ , WOLFGANG ELBERT ¹ , JÖRG STEINKAMP ² , TM CLOOOT ¹ , OPEN RATHARINA LENHART ^{1,23} , BETTINA WEBER ¹ , WOLFGANG ELBERT ¹ , JÖRG STEINKAMP ² , TM CLOOOT ¹ , OPEN PATH CHITZEN ¹ III DICU WECHL ¹ and PD ANK MEDDLLED ¹³ PATH CHITZEN ¹ III DICU WECHL ¹ III DICU WECHL ¹ ANK MEDDLLED ¹³ PATH CHITZEN ¹ III DICU WECHL ¹ ANK MEDDLLED ¹³ PATH CHITZEN ¹ III DICU WECHL ¹ IIII	Is sylvestris as a missing source itrous oxide and methane in sal forest tachacova ³ , Jaans Bäck ³ , Anni Vanhatalo ³ , Elisa Halmeenmäkl ² , Pasi Kolar ² , maralla ² . Licka Dumnana ⁴ Manual Arasta ¹ . Otmor Ethanal & Mari Ethalata ¹³ Manual Arasta ² . Otmor Ethanal & Mari Ethalata ¹³ Manual Arasta ² . Otmor Ethalata ¹ Manual Arasta ² . Otmor Ethalata ¹ Manual Arasta ² . Otmor Ethalata ² Manual Arasta ² . Otmor Ethalata ³ Manual Arasta ³ . Otmor Ethalata ³ Manual Arasta ³ . Martin Maier ^{9,3} . Katerina Svobodova ³ . Friederike Lang ³ .

But what is still unclear?

Study aims

Use AUTOMATIC measurements of CO₂, CH₄ and N₂O to...

- quantify **magnitudes** of emissions
- understand **seasonal** and **diurnal** patterns of emissions
- describe drivers
- bring some light on the **origin**

CO₂, CH₄ and N₂O Every hour for 100 days (April – July 2017) 7200 measurements

• Sap flow

- Stem temperature
- Soil temperature
- Soil water content
- Meteorological variables

Upland forested area, St Jones Reserve, DE

Experimental design

Li-8150 Multiplexer

Li-8100 IRGA

PICARRO PICARRO G2508

Li-8100A

Statistical analysis

• **DIURNAL** patterns and drivers \longrightarrow **Wavelet coherence analysis**

(hourly data)

• **SEASONAL** patterns and drivers \longrightarrow Mixed-effects models

(daily averaged data)

(interactions and temporal autocorrelation)

Results – SEASONAL TRENDS

Seasonal course of sap flow per unit sapwood area (SF) and CO₂, CH₄ and N₂O fluxes associated with **UpperStem**, **LowerStem** and **Soil** chambers. Points are hourly means taken from Day of the Year 102 to 202.

Results – SEASONAL TRENDS

Results – SEASONAL PATTERNS – mixed-effects model

(daily data)

CO ₂		CH ₄		N ₂ O	
MODEL	Variables	MODEL	Variables	MODEL	Variables
UpperStem <i>adjR2</i> = 0.93 <i>p</i> < 0.001	Temperature SWC SF Temp*SF	UpperStem <i>adjR2 = 0.40</i> <i>p < 0.001</i>	Temperature SF	UpperStem <i>adjR2</i> = 0.10 <i>p</i> = 0.032	Temperature SWC SF
LowerStem	SWC*SF _ Temperature	LowerStem <i>adjR2</i> = 0.33 <i>n</i> < 0.001	Temperature SWC	LowerStem p = n.s.	
adjR2 = 0.92 p < 0.001	SWC SF Temp*SWC Temp*SF	Soil adjR2 = 0.92 p < 0.001	Temperature SWC Temp*SWC	Soil adjR2 = 0.22 p = 0.001	Temperature
Soil adjR2 = 0.99 p < 0.001	Temperature SWC SF Temp*SWC				

Results – SEASONAL PATTERNS – mixed-effects model

(daily data)

Results – DIURNAL PATTERNS – Wavelet coherence analysis

Sap Flow

(hourly data)

Temperature

Wavelet coherence analyses output and the percentage of days with significant correlations between CO_2 , CH_4 and N_2O of the LowerStem with Temperature (left panels) and SF (right panels) using hourly data. Yellow color indicates significant temporal correlations (p<0.05).

Conclusions

